Note

On Markov's and Bernstein's Inequalities in the Unit Ball in \mathbf{R}^{k}

ALF JONSSON

Department of Mathematics, University of Umeå, S-901 87 Umeå, Sweden Communicated by Zeev Ditzian

Received February 24, 1992; accepted in revised form March 23, 1993

Simple proofs and refinements of polynomial inequalities in the unit ball in \mathbf{R}^k by O. D. Kellogg are given. \bigcirc 1994 Academic Press, Inc.

INTRODUCTION

This note deals with a generalization of Markov's inequality and Bernstein's inequality to several variables. Markov's inequality in one variable states that $||P'||_{[-1,1]} \le n^2 ||P||_{[-1,1]}$ for every polynomial P of degree less than or equal to n, where [-1, 1] denotes the closed interval from -1 to 1 and the norm is the maximum norm. Using this inequality in different directions, one easily obtains a generalization to the closed unit ball B(0, 1) in the Euclidian space \mathbb{R}^k . The result one gets in this way is that $||\nabla P||_{B(0,1)} \le kn^2 ||P||_{B(0,1)}$ for all polynomials P in k variables of total degree $\le n$, where ∇ denotes the gradient, see, e.g., Coatmelec [1]; however, one does not expect this to be the best possible result. In fact, already O. D. Kellogg showed in [2] that one has $||\nabla P||_{B(0,1)} \le n^2 ||P||_{B(0,1)}$ in the k-dimensional case, too, and he gave a similar result as a generalization of Bernstein's inequality. See also Wilhelmsen [4].

In this note we give a very simple proof of Kellogg's inequalities. We also give refined versions, using a more elaborate method, which is close to the method used in [2].

1. BERNSTEIN'S AND MARKOV'S INEQUALITIES

Let $k \ge 1$ and denote by P_n the set of all polynomials in k variables of total degree $\le n$. The following results are given in [2].

This work has been supported by the Swedish Natural Science Research Council.

NOTE

THEOREM 1. Let $P \in P_n$. Then, for $|\mathbf{x}| < 1$,

$$|\nabla P(\mathbf{x})| \leq \frac{n}{\sqrt{1-|\mathbf{x}|^2}} \|P\|_{B(0,1)}.$$

THEOREM 2. Let $P \in P_n$. Then

$$\|\nabla P\|_{B(0,1)} \leq n^2 \|P\|_{B(0,1)}$$

We note first that it is enough to prove the theorems for k = 2. The proof of the general case then follows by using the result for k = 2 in the twodimensional subspace of \mathbf{R}^k containing the vector \mathbf{x} and the gradient vector of P at \mathbf{x} (if these vectors are not parallel; in case they are, one can use the one-dimensional inequality).

Proof of Theorem 1. Let $\mathbf{x} = (x, y)$ be a point in B(0, 1), let \mathbf{v} be a unit vector and L the chord in B(0, 1) through \mathbf{x} in the direction \mathbf{v} . Denote by 2d the length of L, let \mathbf{p} be the mid point of L, and put $Q(t) = P(\mathbf{p} + t\mathbf{v})$, $t \in \mathbf{R}$. Then Q is a polynomial in one variable of degree $\leq n$, and Bernstein's inequality for algebraic polynomials gives $|Q'(t)| \leq (n/\sqrt{d^2 - t^2}) ||Q||_{[-d, d]}$, |t| < d. But for t corresponding to \mathbf{x} holds $d^2 - t^2 = 1 - |\mathbf{x}|^2$ according to the theorem of intersecting chords, so we get

$$|P_{\mathbf{v}}(\mathbf{x})| \leq \frac{n}{\sqrt{1-|\mathbf{x}|^2}} \|P\|_L \leq \frac{n}{\sqrt{1-|\mathbf{x}|^2}} \|P\|_{B(0,1)}$$
(1)

which gives the estimate in Theorem 1; here P_v denotes the directional derivative.

In the proof of Theorem 2, which is essentially the same as in [2], and in the proof of Theorem 2' below, we need the following lemma which is a well-known tool in the proof of Markov's inequality, see, e.g., [3, p. 139].

LEMMA 1. Let P be a polynomial of degree $\leq n-1$ in one variable. Assume that $|P(x)| \leq 1/\sqrt{d^2 - x^2}$, $x \in (-d, d)$. Then $|P(x)| \leq n/d$, $x \in [-d, d]$.

Proof of Theorem 2. Let v be a unit vector, and consider a diameter D. The directional derivative P_v is a polynomial of degree $\leq n-1$, and on D we may view it as a polynomial in one variable by setting $Q(t) = P_v(tv_1)$, where v_1 is a unit vector in the direction of D. By (1) we have $|Q(t)| \leq (n/\sqrt{1-t^2}) ||P||_{B(0,1)}$. Thus Lemma 1, used with d=1, gives the estimate $||P_v||_D \leq n^2 ||P||_{B(0,1)}$ and the theorem follows.

NOTE

2. Refined Inequalities

Our first result is a refinement of Bernstein's inequality. For a still more precise estimate, see (2) below.

THEOREM 1'. Let $P \in P_n$ and $|\mathbf{x}| < 1$, let \mathbf{v} be a unit vector, and denote by 2d the length of the chord L through \mathbf{x} in the direction \mathbf{v} . Then

$$|P_{\mathbf{v}}(\mathbf{x})| \leq \frac{nd}{\sqrt{1-|\mathbf{x}|^2}} ||P||_{B(0,1)}.$$

To state a refinement of Markov's inequality, we need one more notation. Let $|\mathbf{x}| \leq 1$, let v be a unit vector, and *l* the line through x in the direction v, and consider, if *l* does not pass through the origin, the intersection of B(0, 1) with the two-dimensional subspace of \mathbf{R}^k which contains x and v. We denote by D(l) the part of this intersection which lies between *l* and -l, where -l is the line consisting of the points $-\mathbf{p}, \mathbf{p} \in l$. If *l* passes through the origin, D(l) denotes the diameter in the direction v.

THEOREM 2'. Let $P \in P_n$, $|\mathbf{x}| \leq 1$, and let \mathbf{v} be a unit vector. Then

$$|P_{\mathbf{y}}(\mathbf{x})| \leq n^2 \|P\|_{D(l)}.$$

Again we give the proofs in two dimensions, which is enough. We prepare for the proofs by giving a lemma, which is a version of Bernstein's inequality.

LEMMA 2. Let S(0, 1) be the unit sphere in \mathbb{R}^3 , let t be a unit tangent vector at a point x on the sphere, and let P be a polynomial in three variables of degree $\leq n$. Then $|P_t(\mathbf{x})| \leq n ||P||_G$, where G is the great circle through x which has t as a tangent vector.

Proof. We may assume that G is the unit circle in the xy-plane (otherwise rotate the coordinate system). Let $T(\theta) = P(\cos \theta, \sin \theta, 0)$. Then, for θ corresponding to x, by Bernstein's inequality for trigonometric polynomials, $|P_t(\mathbf{x})| = |T'(\theta)| \le n ||T|| = n ||P||_G$.

Proof of Theorem 1'. In this proof we want to consider x in the theorem as a fixed point and hence we denote it by $\mathbf{x}_0 = (x_0, y_0)$. Furthermore, we assume, as we may, that v is parallel to the y-axis. Consider P as a polynomial in three variables by setting P(x, y, z) = P(x, y). Take $z_0 > 0$ so that $\mathbf{x}'_0 = (x_0, y_0, z_0)$ is a point on S(0, 1). Let D be the circle obtained by intersecting S(0, 1) with the plane $x = x_0$, let t be the unit tangent vector $(0, -z_0/d, y_0/d)$ to this circle at \mathbf{x}'_0 , and let finally G be the great circle through \mathbf{x}'_0 which has t as a tangent. Denote by $E(\mathbf{x}_0)$ the projection of G onto the xy-plane; note that $E(\mathbf{x}_0)$ is the ellipse centered at the origin with major axis of length 2 which touches L at \mathbf{x}_0 .

By Lemma 2 we have $|P_t(\mathbf{x}'_0)| \leq n ||P||_G = n ||P||_{E(\mathbf{x}_0)}$. But we also have $P_t(\mathbf{x}'_0) = -(z_0/d)(\partial P/\partial y)(\mathbf{x}'_0) + (y_0/d)(\partial P/\partial z)(\mathbf{x}'_0)$, so, since P does not depend on z, $z_0 = \sqrt{d^2 - y_0^2}$, and $d^2 - y_0^2 = 1 - |\mathbf{x}_0|^2$ by the theorem of intersecting chords, we get

$$|P_{\mathbf{v}}(\mathbf{x}_{0})| \leq \frac{nd}{\sqrt{1-|\mathbf{x}_{0}|^{2}}} \|P\|_{E(\mathbf{x}_{0})}$$
(2)

and the theorem is proved.

Proof of Theorem 2'. If $|\mathbf{x}| = 1$ and \mathbf{v} is a tangent vector to the circle, the result follows from Lemma 2. Otherwise, let again \mathbf{p} be the midpoint of the chord L through \mathbf{x} in the direction \mathbf{v} , and put $Q(t) = P_{\mathbf{v}}(\mathbf{w})$ where $\mathbf{w} = \mathbf{p} + t\mathbf{v}$, $t \in \mathbf{R}$. Then for |t| < d we have $E(\mathbf{w}) \subset D(l)$ and, by the theorem of intersecting chords, $1 - |\mathbf{w}|^2 = d^2 - t^2$. From (2) it follows that $|Q(t)| \leq nd/\sqrt{d^2 - t^2} ||P||_{D(l)}$, |t| < d, and by means of Lemma 1 we get $|Q(t)| \leq (n/d) nd ||P||_{D(l)} = n^2 ||P||_{D(l)}$, $|t| \leq d$, which proves the theorem.

REFERENCES

- 1. C. COATMELEC, Approximation et interpolation des fonctions differentiables de plusieurs variables, Ann. Sci. École Norm. Sup. (3) 83 (1966), 271-341.
- 2. O. D. KELLOGG, On bounded polynomials in several variables, Math. Z. 27 (1927), 55-64.
- 3. I. P. NATANSON, "Constructive Theory of Functions," Vol. 1, Ungar, New York, 1964.
- 4. D. R. WILHELMSEN, A Markov inequality in several dimensions, J. Approx. Theory 11 (1974), 216-220.