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Note

On Markov’'s and Bernstein’s Inequalities
in the Unit Ball in R*
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Simple proofs and refinements of polynomial inequalities in the unit ball in R* by
0. D. Kellogg are given.  © 1994 Academic Press, Inc.

INTRODUCTION

This note deals with a generalization of Markov’s inequality and
Bernstein’s inequality to several variables. Markov’s inequality in one
variable states that |P'||_, ,<n’||P| _, ,; for every polynomial P of
degree less than or equal to n, where [ —1, 1] denotes the closed interval
from —1 to 1 and the norm is the maximum norm. Using this inequality
in different directions, one easily obtains a generalization to the closed unit
ball B(0, 1) in the Euclidian space R*. The result one gets in this way is
that |[VP| g0, 1) <kn? | Pl 50, 1, for all polynomials P in k variables of total
degree <n, where V denotes the gradient, see, e.g., Coatmelec [1];
however, one does not expect this to be the best possible result. In fact,
already O. D. Kellogg showed in [2] that one has [|[VP{ g 1, <1 | Pl s, b
in the k-dimensional case, too, and he gave a similar result as a generaliza-
tion of Bernstein’s inequality. See also Wilhelmsen [4].

In this note we give a very simple proof of Kellogg’s inequalities. We also
give refined versions, using a more elaborate method, which is close to the
method used in [2].

1. BERNSTEIN'S AND MARKOV’S INEQUALITIES

Let k=1 and denote by P, the set of all polynomials in £ variables of
total degree <n. The following results are given in [2].
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THEOREM 1. Let P€ P,. Then, for |x| <1,

IVP(x)| <

P
T/ B0, 1)
J1=Ix|?

THEOREM 2. Let Pe P,. Then
VP B(O, 1)<n2 ”P”B(O‘li'

We note first that it is enough to prove the theorems for & = 2. The proof
of the general case then follows by using the result for k=2 in the two-
dimensional subspace of R* containing the vector x and the gradient vector
of P at x (if these vectors are not parallel; in case they are, one can use the
one-dimensional inequality).

Proof of Theorem 1. Let x=(x, y) be a point in B(0, 1), let v be a unit
vector and L the chord in B(0, 1) through x in the direction v. Denote by
2d the length of L, let p be the mid point of L, and put Q(¢t)= P(p + tv),
teR. Then Q is a polynomial in one variable of degree <n, and Bernstein’s
inequality for algebraic polynomials gives |Q'(¢)| < (n/\/d* —1*) | Q] [—dd]s
|t} <d. But for ¢ corresponding to x holds d> —t*=1— |x|? according to
the theorem of intersecting chords, so we get

|P,(x)r<ﬁuPanﬁnPum,. (1)

which gives the estimate in Theorem 1; here P, denotes the directional
derivative.

In the proof of Theorem 2, which is essentially the same as in [2], and
in the proof of Theorem 2’ below, we need the following lemma which is
a well-known tool in the proof of Markov’s inequality, see, e.g., [3, p. 139].

LemMma 1. Let P be a polynomial of degree <n—1 in one variable.

Assume that |P(x)| <1/ /d?>—x?, xe(—d d). Then |P(x)<n/d, xe
[—d d].

Proof of Theorem 2. Let v be a unit vector, and consider a diameter D.
The directional derivative P, is a polynomial of degree <n—1, and on D
we may view it as a polynomial in one variable by setting Q(7)= P (¢v,),
where v, is a unit vector in the direction of D. By (1) we have |Q(¢)] <
(n//1— 1) |P|| go.1)- Thus Lemma 1, used with d=1, gives the estimate
12,1 p<n® | P| go. 1, and the theorem follows.
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2. REFINED INEQUALITIES

Our first result is a refinement of Bernstein’s inequality. For a still more
precise estimate, see (2) below.

THEOREM 1. Let Pe P, and |X| < |, let v be a unit vector, and denote by
2d the length of the chord L through x in the direction v. Then

nd
[P (X)) € ——=————= ”PHB(O, 1)

VINME

To state a refinement of Markov's inequality, we need one more
notation. Let |x| <1, let v be a unit vector, and / the line through x in the
direction v, and consider, if / does not pass through the origin, the inter-
section of B(0, 1) with the two-dimensional subspace of R* which contains
x and v. We denote by D(/) the part of this intersection which lies between
! and —/, where —/ is the line consisting of the points —p, pel If / passes
through the origin, D(/) denotes the diameter in the direction v.

THEOREM 2. Let PeP,, |x| <1, and let v be a unit vector. Then
|Pv(x)l <n? ”P”D(l)-

Again we give the proofs in two dimensions, which is enough. We
prepare for the proofs by giving a lemma, which is a version of Bernstein’s
inequality.

LEMMA 2. Let S(0, 1) be the unit sphere in R3, let t be a unit tangent
vector at a point X on the sphere, and let P be a polynomial in three variables
of degree <n. Then |P(x)| <n||P|s, where G is the great circle through x
which has t as a tangent vector.

Proof. We may assume that G is the unit circle in the xyp-plane
(otherwise rotate the coordinate system). Let T'(8)= P(cos 6, sin 8, Q).
Then, for # corresponding to x, by Bernstein’s inequality for trigonometric
polynomials, |P(x)| ={T'(0)l <n ||IT| =n|P|g.

Proof of Theorem 1’. In this proof we want to consider x in the theorem
as a fixed point and hence we denote it by x,= (x,, Jo).- Furthermore, we
assume, as we may, that v is parallel to the y-axis. Consider P as a polyno-
mial in three variables by setting P(x, y, z) = P(x, y). Take z4> 0 so that
Xo = (xq, Vo, Zo) 15 @ point on S(0, 1). Let D be the circle obtained by inter-
secting S{0, 1) with the plane x=x,, let t be the unit tangent vector
(0, —z4/d, yo/d) to this circle at x;, and let finally G be the great circle
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through x; which has t as a tangent. Denote by E(x,) the projection of G
onto the xy-plane; note that E(x,) is the ellipse centered at the origin with
major axis of length 2 which touches L at x,.

By Lemma 2 we have [P (xo)| <n |P|g=n | P gy, But we also have
P.(xg) = —(zo/d WOP/OY)(x4) + (yo/dWOP/Oz)(xp), soO, since P does not
depend on z, zo=./d>—y2, and d*—yZ=1—|x,|? by the theorem of
intersecting chords, we get

d
P, (%,)] <71_i—|x——|2 1P] 4oxoy (2)

and the theorem is proved.

Proof of Theorem?2'. 1f |x|=1 and v is a tangent vector to the circle,
the result follows from Lemma 2. Otherwise, let again p be the midpoint of
the chord L through x in the direction v, and put Q(¢)=P,(w) where
w=p-+1tv, teR. Then for |t| <d we have E(w) < D(!) and, by the theorem
of intersecting chords, 1 — |w|?=d?— % From (2) it follows that |Q(t)| <
nd/\/d*>—1* |Plpyy, |1l <d, and by means of Lemma 1 we get |Q(¢)| <
(n/d) nd | Pl py,=n* | Pl pry» 2] <d, which proves the theorem.
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