Note

On Markov's and Bernstein's Inequalities in the Unit Ball in \mathbf{R}^{k}

Alf Jonsson
Department of Mathematics, University of Umeå, S-901 87 Umeă, Sweden

Communicated by Zeev Ditzian
Received February 24, 1992; accepted in revised form March 23, 1993

> Simple proofs and refinements of polynomial inequalities in the unit ball in \mathbf{R}^{\star} by O. D. Kellogg are given. © 1994 Academic Press, Inc.

Introduction

This note deals with a generalization of Markov's inequality and Bernstein's inequality to several variables. Markov's inequality in one variable states that $\left\|P^{\prime}\right\|_{[-1,1]} \leqslant n^{2}\|P\|_{[-1,1]}$ for every polynomial P of degree less than or equal to n, where $[-1,1]$ denotes the closed interval from -1 to 1 and the norm is the maximum norm. Using this inequality in different directions, one easily obtains a generalization to the closed unit ball $B(0,1)$ in the Euclidian space \mathbf{R}^{k}. The result one gets in this way is that $\|\nabla P\|_{B(0,1)} \leqslant k n^{2}\|P\|_{B(0,1)}$ for all polynomials P in k variables of total degree $\leqslant n$, where ∇ denotes the gradient, see, e.g., Coatmelec [1]; however, one does not expect this to be the best possible result. In fact, already O. D. Kellogg showed in [2] that one has $\|\nabla P\|_{B(0,1)} \leqslant n^{2}\|P\|_{B(0,1)}$ in the k-dimensional case, too, and he gave a similar result as a generalization of Bernstein's inequality. See also Wilhelmsen [4].

In this note we give a very simple proof of Kellogg's inequalities. We also give refined versions, using a more elaborate method, which is close to the method used in [2].

1. Bernstein's and Markov's Inequalities

Let $k \geqslant 1$ and denote by P_{n} the set of all polynomials in k variables of total degree $\leqslant n$. The following results are given in [2].

This work has been supported by the Swedish Natural Science Research Council.

Theorem 1. Let $P \in P_{n}$. Then, for $|\mathbf{x}|<1$,

$$
|\nabla P(\mathbf{x})| \leqslant \frac{n}{\sqrt{1-|\mathbf{x}|^{2}}}\|P\|_{B(0,1)}
$$

Theorem 2. Let $P \in P_{n}$. Then

$$
\|\nabla P\|_{B(0,1)} \leqslant n^{2}\|P\|_{B(0,1)} .
$$

We note first that it is enough to prove the theorems for $k=2$. The proof of the general case then follows by using the result for $k=2$ in the twodimensional subspace of \mathbf{R}^{k} containing the vector \mathbf{x} and the gradient vector of P at \mathbf{x} (if these vectors are not parallel; in case they are, one can use the one-dimensional inequality).

Proof of Theorem 1. Let $\mathbf{x}=(x, y)$ be a point in $B(0,1)$, let \mathbf{v} be a unit vector and L the chord in $B(0,1)$ through \mathbf{x} in the direction v. Denote by $2 d$ the length of L, let \mathbf{p} be the mid point of L, and put $Q(t)=P(\mathbf{p}+t \mathbf{v})$, $t \in \mathbf{R}$. Then Q is a polynomial in one variable of degree $\leqslant n$, and Bernstein's inequality for algebraic polynomials gives $\left|Q^{\prime}(t)\right| \leqslant\left(n / \sqrt{d^{2}-t^{2}}\right)\|Q\|_{[-d, d]}$, $|t|<d$. But for t corresponding to \mathbf{x} holds $d^{2}-t^{2}=1-|\mathbf{x}|^{2}$ according to the theorem of intersecting chords, so we get

$$
\begin{equation*}
\left\lvert\, P_{\mathbf{v}}(\mathbf{x})\left\|\leqslant \frac{n}{\sqrt{1-|\mathbf{x}|^{2}}}\right\| P\left\|_{L} \leqslant \frac{n}{\sqrt{1-|\mathbf{x}|^{2}}}\right\| P\right. \|_{B(0,1)} \tag{1}
\end{equation*}
$$

which gives the estimate in Theorem 1; here P_{v} denotes the directional derivative.

In the proof of Theorem 2, which is essentially the same as in [2], and in the proof of Theorem 2^{\prime} below, we need the following lemma which is a well-known tool in the proof of Markov's inequality, see, e.g., [3, p. 139].

Lemma 1. Let P be a polynomial of degree $\leqslant n-1$ in one variable. Assume that $|P(x)| \leqslant 1 / \sqrt{d^{2}-x^{2}}, \quad x \in(-d, d)$. Then $|P(x)| \leqslant n / d, x \in$ $[-d, d]$.

Proof of Theorem 2. Let \mathbf{v} be a unit vector, and consider a diameter D. The directional derivative P_{v} is a polynomial of degree $\leqslant n-1$, and on D we may view it as a polynomial in one variable by setting $Q(t)=P_{v}\left(t \mathbf{v}_{1}\right)$, where \mathbf{v}_{1} is a unit vector in the direction of D. By (1) we have $|Q(t)| \leqslant$ $\left(n / \sqrt{1-t^{2}}\right)\|P\|_{B(0,1)}$. Thus Lemma 1, used with $d=1$, gives the estimate $\left\|P_{\mathrm{v}}\right\|_{D} \leqslant n^{2}\|P\|_{B(0,1)}$ and the theorem follows.

2. Refined Inequalities

Our first result is a refinement of Bernstein's inequality. For a still more precise estimate, see (2) below.

Theorem 1'. Let $P \in P_{n}$ and $|\mathbf{x}|<1$, let \mathbf{v} be a unit vector, and denote by $2 d$ the length of the chord L through \mathbf{x} in the direction \mathbf{v}. Then

$$
\left|P_{v}(\mathbf{x})\right| \leqslant \frac{n d}{\sqrt{1-|\mathbf{x}|^{2}}}\|P\|_{B(0,1)} .
$$

To state a refinement of Markov's inequality, we need one more notation. Let $|\mathbf{x}| \leqslant 1$, let \mathbf{v} be a unit vector, and l the line through \mathbf{x} in the direction \mathbf{v}, and consider, if l does not pass through the origin, the intersection of $B(0,1)$ with the two-dimensional subspace of \mathbf{R}^{k} which contains \mathbf{x} and \mathbf{v}. We denote by $D(l)$ the part of this intersection which lies between l and $-l$, where $-l$ is the line consisting of the points $-\mathbf{p}, \mathbf{p} \in l$. If l passes through the origin, $D(l)$ denotes the diameter in the direction \mathbf{v}.

Theorem 2'. Let $P \in P_{n},|\mathbf{x}| \leqslant 1$, and let \mathbf{v} be a unit vector. Then

$$
\left|P_{\vee}(\mathbf{x})\right| \leqslant n^{2}\|P\|_{D(1)} .
$$

Again we give the proofs in two dimensions, which is enough. We prepare for the proofs by giving a lemma, which is a version of Bernstein's inequality.

Lemma 2. Let $S(0,1)$ be the unit sphere in $\mathbf{R}^{\mathbf{3}}$, let \mathbf{t} be a unit tangent vector at a point \mathbf{x} on the sphere, and let P be a polynomial in three variables of degree $\leqslant n$. Then $\left|P_{\mathbf{t}}(\mathbf{x})\right| \leqslant n\|P\|_{G}$, where G is the great circle through \mathbf{x} which has \mathbf{t} as a tangent vector.

Proof. We may assume that G is the unit circle in the $x y$-plane (otherwise rotate the coordinate system). Let $T(\theta)=P(\cos \theta, \sin \theta, 0)$. Then, for θ corresponding to \mathbf{x}, by Bernstein's inequality for trigonometric polynomials, $\left|P_{\mathbf{I}}(\mathbf{x})\right|=\left|T^{\prime}(\theta)\right| \leqslant n\|T\|=n\|P\|_{G}$.

Proof of Theorem 1'. In this proof we want to consider \mathbf{x} in the theorem as a fixed point and hence we denote it by $\mathbf{x}_{0}=\left(x_{0}, y_{0}\right)$. Furthermore, we assume, as we may, that v is parallel to the y-axis. Consider P as a polynomial in three variables by setting $P(x, y, z)=P(x, y)$. Take $z_{0}>0$ so that $\mathbf{x}_{0}^{\prime}=\left(x_{0}, y_{0}, z_{0}\right)$ is a point on $S(0,1)$. Let D be the circle obtained by intersecting $S(0,1)$ with the plane $x=x_{0}$, let t be the unit tangent vector ($0,-z_{0} / d, y_{0} / d$) to this circle at \mathbf{x}_{0}^{\prime}, and let finally G be the great circle
through \mathbf{x}_{0}^{\prime} which has \mathbf{t} as a tangent. Denote by $E\left(\mathbf{x}_{0}\right)$ the projection of G onto the $x y$-plane; note that $E\left(\mathbf{x}_{0}\right)$ is the ellipse centered at the origin with major axis of length 2 which touches L at \mathbf{x}_{0}.

By Lemma 2 we have $\left|P_{\mathrm{t}}\left(\mathbf{x}_{0}^{\prime}\right)\right| \leqslant n\|P\|_{G}=n\|P\|_{E\left(\mathbf{x}_{0}\right)}$. But we also have $P_{\mathrm{t}}\left(\mathbf{x}_{0}^{\prime}\right)=-\left(z_{0} / d\right)(\partial P / \partial y)\left(\mathbf{x}_{0}^{\prime}\right)+\left(y_{0} / d\right)(\partial P / \partial z)\left(\mathbf{x}_{0}^{\prime}\right)$, so, since P does not depend on $z, z_{0}=\sqrt{d^{2}-y_{0}^{2}}$, and $d^{2}-y_{0}^{2}=1-\left|\mathbf{x}_{0}\right|^{2}$ by the theorem of intersecting chords, we get

$$
\begin{equation*}
\left|P_{v}\left(\mathbf{x}_{0}\right)\right| \leqslant \frac{n d}{\sqrt{1-\left|\mathbf{x}_{0}\right|^{2}}}\|P\|_{E\left(\mathbf{x}_{0}\right)} \tag{2}
\end{equation*}
$$

and the theorem is proved.
Proof of Theorem 2'. If $|\mathbf{x}|=1$ and \mathbf{v} is a tangent vector to the circle, the result follows from Lemma 2. Otherwise, let again \mathbf{p} be the midpoint of the chord L through \mathbf{x} in the direction \mathbf{v}, and put $Q(t)=P_{\mathbf{v}}(\mathbf{w})$ where $\mathbf{w}=\mathbf{p}+t \mathbf{v}, t \in \mathbf{R}$. Then for $|t|<d$ we have $E(\mathbf{w}) \subset D(l)$ and, by the theorem of intersecting chords, $1-|\mathbf{w}|^{2}=d^{2}-t^{2}$. From (2) it follows that $|Q(t)| \leqslant$ $n d / \sqrt{d^{2}-t^{2}}\|P\|_{D(l)},|t|<d$, and by means of Lemma 1 we get $|Q(t)| \leqslant$ $(n / d) n d\|P\|_{D(l)}=n^{2}\|P\|_{D(l)},|t| \leqslant d$, which proves the theorem.

References

1. C. Coatmelec, Approximation et interpolation des fonctions differentiables de plusieurs variables, Ann. Sci. École Norm. Sup. (3) 83 (1966), 271-341.
2. O. D. Kellogg, On bounded polynomials in several variables, Math. Z. 27 (1927), 55-64.
3. I. P. Natanson, "Constructive Theory of Functions," Vol. 1, Ungar, New York, 1964.
4. D. R. Wilhelmsen, A Markov inequality in several dimensions, J. Approx. Theory 11 (1974), 216-220.
