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Note

On Markov's and Bernstein's Inequalities
in the Unit Ball in Rk
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Simple proofs and refinements of polynomial inequalities in the unit ball in Rk by
O. D. Kellogg are given. !!;;, 1994 Academic Press, Inc.

INTRODUCTION

This note deals with a generalization of Markov's inequality and
Bernstein's inequality to several variables, Markov's inequality in one
variable states that IIP'II[_I,I]~n211P11[_I,1] for every polynomial P of
degree less than or equal to n, where [-1, 1] denotes the closed interval
from - 1 to 1 and the norm is the maximum norm, Using this inequality
in different directions, one easily obtains a generalization to the closed unit
ball B(O, 1) in the Euclidian space Rk

, The result one gets in this way is
that IIVP II B(O, I) ~ kn 2 II P II B(O, 1) for all polynomials P in k variables of total
degree ~n, where V denotes the gradient, see, e,g" Coatmelec [1];
however, one does not expect this to be the best possible result, In fact,
already 0, D, Kellogg showed in [2] that one has IIVPIIB(o, 1) ~n2 IIPIIB(O, 1)

in the k-dimensional case, too, and he gave a similar result as a generaliza­
tion of Bernstein's inequality, See also Wilhelmsen [4].

In this note we give a very simple proof of Kellogg's inequalities, We also
give refined versions, using a more elaborate method, which is close to the
method used in [2].

1. BERNSTEIN'S AND MARKOV'S INEQUALITIES

Let k ~ 1 and denote by Pn the set of all polynomials in k variables of
total degree ~n. The following results are given in [2].
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THEOREM 1. Let PE P". Then, for Ixl < 1,

n
IVP(x)1 ~ J IIPIIB/O 1)'

1 -lxl 2
.

THEOREM 2. Let PE P". Then

IIVPII B(O. 1) ~ n
2 1IPIIB(O.II·

We note first that it is enough to prove the theorems for k = 2. The proof
of the general case then follows by using the result for k = 2 in the two­
dimensional subspace of R k containing the vector x and the gradient vector
of P at x (if these vectors are not parallel; in case they are, one can use the
one-dimensional inequality).

Proof of Theorem 1. Let x = (x, y) be a point in B(O, 1), let v be a unit
vector and L the chord in B(O, 1) through x in the direction v. Denote by
2d the length of L, let p be the mid point of L, and put Q(t) = P(p + tv),
t E R. Then Q is a polynomial in one variable of degree ~ n, and Bernstein's

inequality for algebraic polynomials gives IQ'(t)1 ~ (n/~) IIQ II [-d, d]'

It I < d. But for t corresponding to x holds d 2
- t2 = l-lxl 2 according to

the theorem of intersecting chords, so we get

n n
IPv(x)1 ~J 21IPIIL~J 21IPIIB(0,11

I-Ixl I-Ixl
(1)

which gives the estimate in Theorem 1; here P v denotes the directional
derivative.

In the proof of Theorem 2, which is essentially the same as in [2], and
in the proof of Theorem 2' below, we need the following lemma which is
a well-known tool in the proof of Markov's inequality, see, e.g., [3, p. 139].

LEMMA 1. Let P be a polynomial of degree ~ n - 1 in one variable.

Assume that IP(x)I~I/Jd2-x2, xE(-d,d). Then IP(x)l~nld, XE
[ -d, d].

Proof of Theorem 2. Let v be a unit vector, and consider a diameter D.
The directional derivative P v is a polynomial of degree ~ n - 1, and on D
we may view it as a polynomial in one variable by setting Q( t) = Pv( tv 1),
where VI is a unit vector in the direction of D, By (1) we have IQ(t)1 ~

(n/jt=t2) 1IPIIB(O.l)' Thus Lemma 1, used with d= 1, gives the estimate
II PvII D ~ n2 II P II B(O, 1) and the theorem follows,
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2. REFINED INEQUALITIES

153

Our first result is a refinement of Bernstein's inequality. For a still more
precise estimate, see (2) below.

THEOREM I'. Let PE Pn and Ixl < 1, let v be a unit vector, and denote by
2d the length of the chord L through x in the direction v. Then

nd
IP.(x)1 ~J oIIPIIB(O.I)·

1 -Ixl~

To state a refinement of Markov's inequality, we need one more
notation. Let Ixl ~ 1, let v be a unit vector, and I the line through x in the
direction v, and consider, if I does not pass through the origin, the inter­
section of B(O, 1) with the two-dimensional subspace of Rk which contains
x and v. We denote by D(l) the part of this intersection which lies between
I and -I, where -I is the line consisting of the points - p, pEl. If I passes
through the origin, D(l) denotes the diameter in the direction v.

THEOREM 2'. Let PE Pn , Ixl ~ 1, and let v be a unit vector. Then

Again we give the proofs in two dimensions, which is enough. We
prepare for the proofs by giving a lemma, which is a version of Bernstein's
inequality.

LEMMA 2. Let 8(0, 1) be the unit sphere in R3, let t be a unit tangent
vector at a point x on the sphere, and let P be a polynomial in three variables
of degree ~n. Then IP,(x)1 ~ n IIPIIG, where G is the great circle through x
which has t as a tangent vector.

Proof. We may assume that G is the unit circle in the xy-plane
(otherwise rotate the coordinate system). Let T(8) = P(cos 8, sin 8, 0).
Then, for 8 corresponding to x, by Bernstein's inequality for trigonometric
polynomials, IP.(x)1 = 1T'(8)1 ~n II Til =n IIPIIG'

Proof of Theorem 1'. In this proof we want to consider x in the theorem
as a fixed point and hence we denote it by X o = (xo, Yo). Furthermore, we
assume, as we may, that v is parallel to the y-axis. Consider P as a polyno­
mial in three variables by setting P(x, y, z) = P(x, y). Take zo > 0 so that
x~ = (xo, Yo, zo) is a point on 8(0, 1). Let D be the circle obtained by inter­
secting 8(0, 1) with the plane x = X o, let t be the unit tangent vector
(0, -zo/d, yo/d) to this circle at x~, and let finally G be the great circle
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through xb which has t as a tangent. Denote by E(xo) the projection of G
onto the xy-plane; note that E(xo) is the ellipse centered at the origin with
major axis of length 2 which touches L at xo'

By Lemma 2 we have IPt(xb)1 ~n IIPIIG=n IIPIIE(xo)' But we also have
Pt(xb) = - (zo/d)(oP/oy )(xb) + (yo/d)(oP/oz)(xb), so, since P does not

depend on z, Zo = j d 2
- y~, and d 2

- y~ = 1 - Ixo1
2 by the theorem of

intersecting chords, we get

nd
IP.(xo)1 ~ j 2 IIPII E(xo)

l-ixol
(2)

and the theorem is proved.

Proof of Theorem 2'. If Ixl = 1 and v is a tangent vector to the circle,
the result follows from Lemma 2. Otherwise, let again p be the midpoint of
the chord L through x in the direction v, and put Q(t) = p.(w) where
w=p+tv, tER. Then for It I<dwe have E(w)cD(l) and, by the theorem
of intersecting chords, l-lwl 2 = d 2- t2. From (2) it follows that IQ(t)1 ~

nd/jd2-t21IPIID(/), Itl<d, and by means of Lemma 1 we get IQ(t)l~
(n/d)ndIIPIID(/)=n21IPIID(/), Itl~d, which proves the theorem.
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